Inorganic

Compounds

Typical source of Contaminant

The Table below lists all the drinking water analytes that we detected during calendar year 2023.

Min

NJDWSC

Result

The presence of these analytes in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from January 1 through December 31, 2023. The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants are not expected to vary significantly from year to year.

TABLE 1: Table of Detected Contaminants

Federal/State

MCLG

Some people may be more vulnerale to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AID or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers, EPA/CDC guidelines on approprate means to lessers the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Result Range

0.00961		0.00961	961 NA 2/2		2	Yes	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural		
0.267		0.267	NA	10 / 10	10	Yes	deposts.		
est monthly % of highes <0.3 NTU	0.03	0.66	0.03 - 0.66	TT = 1 NTU	Yes		Soil Runoff		
99.96 %				TT = 95% of samples <0.3 NTU	Yes	NA			
			Average for 2023	0.06 NTU					
= Percent (%) oval or meeting ernative criteria	Average (RA Removal R	AA) by % Ratio or	Percent (%) Removal Range	Removal Ratio Range	Yes	N/A	Naturally present in the environment.		
oval ratio of 1.0.		•	29 - 45	0.9 - 1.3					
NJDWSC Facility Met Annual Average Chlorine as Cl ₂ (ppm) Yes 1.2				sults					
				Result Range	MRDL	MRDLG	Typical source of Contaminant		
			1.2 0.37 - 2.46		4.0	4.0	Treatment Process		
		It Range	MCLG	MCL Meets Std?	Typical source of Contaminant				
0.00348	0.015	0	ND - 0.00371		0	Yes	Corrosion of household plumbing; Erosion of natural deposits; Leaching from wood		
0.400	1.3	0	ND	0.217	1.3	Yes	preservatives.		
	0.267 est monthly % of oples <0.3 NTU 99.96 % = Percent (%) oval or meeting rnative criteria oval ratio of 1.0. etants ty pm) th Percentile	o.267 est monthly % of sples <0.3 NTU 99.96 % = Percent (%) oval or meeting rnative criteria oval ratio of 1.0. etants compliance met met met met met met met met met me	o.267 est monthly % of sples <0.3 NTU 99.96 % 1.1 Running Annual Average (RAA) by % Removal Ratio or Alternative Compliance Criteria Removal Ratio ctants ty pm) The Percentile O.003 O.66 1.1 Running Annual Average (RAA) by % Removal Ratio or Alternative Compliance Criteria Removal Ratio Annual Average (RAA) by % Removal Ratio or Alternative Compliance Criteria Removal Ratio Compliance Met Annual Average (RAA) by % Removal Ratio or Alternative Compliance Criteria Removal Ratio Annual Average (RAA) by % Removal Ratio or Alternative Compliance Criteria Removal Ratio O.003 O.66	0.267 0.267 NA est monthly % of pples <0.3 NTU 99.96 % 1.1 Running Annual Average (RAA) by % Removal Ratio or Alternative Compliance Oriteria Removal Ratio Estants Estants Extents Ext	0.267	0.267	0.267		

Lead and Copper: In 2019, NJDWSC qualified for reduced annual monitoring for Lead and Copper per NJDEP. 5 Samples per year (Jun-Sep)

NJDWSC's distribution system connections derived from the 4" main service tap, fed from the 84" main line do not contain any lead constituents.

(See Lead Service Line (LSL) Information on NJDWSC website and intranet portal.

Note: Municipality responsible for inserting their respective Lead and Copper results.

Organic Disinfection by-products Annual (Aug 2020)	NJDWSC Result		Min	Max	MCL Meets Std?	Typical source of Contaminant		
Total Trihalomethanes (ppb)	OTP (T2) Admin Bldg (P5)	43 40	NA	NA	Yes	By-product of drinking water disinfection		
Total Haloacetic Acids (ppb) OTP (T2) Admin Bldg (P5) OTP (T2) 36 NA NA Yes By-product of drinking water disinfection								
Note: Municipality responsible to insert their respective DBP results.								

PWS ID 1613001

North Jersey District Water Supply Commission

2024 Consumer Confidence Report

MK/AD (2/7/2024) Rev: 5/2/2024

	Т	ABLE 2: SECONDAI	RY PARAMETERS - TR	REATMENT PLANT	Γ EFFLUENT			
Secondary C		NJDWSC Result	Federal/State S Standal (Recommended	rds	Meet Recommended Standards	Typical source of Contaminant		
ABS/LAS	ppm	<0.05	500		yes			
Alkalinity	ppm	40.0	NS		yes			
Aluminum	ppm	0.0373	≤ 0.20	0	yes			
Chloride	ppm	52.2	≤ 250)	yes			
Color	CU	2.0	≤ 10		yes			
Copper	ppm	0.0152 ≤ 1.0			yes			
Hardness ppm Iron ppm Manganese ppm Odor TON		70.0	50 - 25	50	yes	Naturally present in the		
		<0.2			yes	environment		
		0.0177	0.0177 ≤ 0.05			CHVIIOIIIICIT		
		<1	1OT 8	3 TON				
Sodium	ppm	33.0	≤ 50		yes			
pН	SU	8.15	6.5 - 8	.5	yes	1		
Sulfate	ppm	8.11	≤ 250		yes			
Total Dissolved Solids	ppm	79	≤ 500)	yes			
Microbiologicals Total Coliform Bacteria (%)		<0.01	≤ 5		yes			
		NJDWSC Result	MCL	MCLG	MCL Meets Std?	Typical source of Contaminant		
		0.00%	< 5% of monthly sample total	0	Yes	Naturally present in the environment		

Microbiologicals: The NJDWSC treatment plant, based on serving a current community population of approx. 150 persons, is required to collect one Total Coliform sample per month of it's Finished Water per NJDEP.

Specific municipalities to insert results for their respective total coliform results.

TABLE 3: ADDITIONAL MONITORING: PER- and POLYFLUOROALKYL ACID RESULTS								
NJDWSC Plant Effluent	NJDWSC Result		Min	Max	MCL Meets Std?	Typical source of Contaminant		
Perflouorononanoic Acid (PFNA)	< 0.002	ppb	NA	NA	Yes			
Perfluoroctane Sulfonic Acid (PFOS)	0.00363	ppb	NA	NA	Yes	Processing aid in the emulsion process used to make fluoropolymers.		
Perfluoroctanoic Acid (PFOA)	0.00438	ppb	NA	NA	Yes			

TABLE 4: ADDITIONAL MONITORING: RADIOLOGICAL RESULTS							
Radiologicals	NJDWSC Result	MCL	MCLG	MCL Meets Std?	Typical source of Contaminant		
Combined Radium (pCi/L)	1.5	5	0	Yes	Oil and gas production and		
Gross alpha particle (pCi/L)	< 3	15	0	Yes	mining activities. Erosion of		
Uranium (ppb)	< 1	30	0	Yes	natural deposits		

TABLE 5: SOURCE WATER ASSESSMENT								
The source water assessment performed on our Surface Water Intake determine the following:								
Source Water Susceptibility Ratings	Pathogens	Nutrients	Pesticides	Volatile Organic Compounds	Inorganic Contaminants	Radionuclides	Radon	Disinfection Byproduct Precursors
NJDWSC 5 Surface Water Intake	5-High	5-High	2-Medium 3-Low	5-Medium	5-High	5-Low	5-Low	5-High

Source Water Assessment: If the surface water is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination. Public water systems are required to monitor for regulated contaminants and to install treatment if any conaminants are detedted at frequencies and concentrats above allowable levels. As a result of the assessment, NJDEP may change the existing monitoring schedules based on the susceptibility ratings.

PWS ID 1613001

North Jersey District Water Supply Commission

2024 Consumer Confidence Report

Definitions of Terms in Table of Water Quality Characteristics

ABS/LAS: Alkylbenzene Sulfonate and Linear Alkylbenzene Sulfonate (surfactants)

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Inorganic Compounds - Chemicals associated with minerals and metals.

<u>Maximum Contaminant Level (MCL)</u> - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

<u>Maximum Contaminant Level Goal (MCLG)</u> – The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

<u>Maximum Residuals Disinfectant Level (MRDL</u>) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

<u>Maximum Residual Disinfectant Goal (MRDLG)</u> – The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

<u>Microbiologicals</u> - Microorganisms such as bacteria, viruses, and protozoa, which may be potentially harmful. These organisms may occur naturally or can be introduced into the environment from sewage treatment plants, septic systems, and runoff.

Radiologicals - Radioactive contaminants that can be naturally occurring or be the result of oil and gas production and mining activities.

<u>Primary Standards</u> – Maximum allowable levels set by Federal drinking water regulations, which are based on human health criteria.

TON - Threshold Odor Number

TT - Treatment Technique – A required process intended to reduce the level of contamination in drinking water.

Turbidity – A measure of the particulate matter or "cloudiness" of the water. High turbidity can hinder the effectiveness of disinfectants.

NA - Not Applicable

ND - Non-Detectable

ug/L/ppb - Concentration in parts per billion

NS - No Standard.

NTU - National Turbidity Unit – unit of turbidity measurement.

ppm - Concentration in parts per million.

RAA – Running annual average

pCi/L - Picocuries per liter (a measure of radiation)

MK/AD (2/7/2024) Rev: 5/2/2024

3